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Abstract

Climate change is presenting a global challenge to society and ecosystems. This is chang-

ing long-standing methods to determine the values of forests to include their role in climate

mitigation and adaptation, alongside traditional forest products and services. Forests have

become increasingly important in climate change dialogues, beyond international climate

negotiations, because of their framing as a Natural Climate Solution (NCS) or Nature-Based

Solution (NBS). In turn, the term “Climate-Smart Forestry” (CSF) has recently entered the

vernacular in myriad disciplines and decision-making circles espousing the linkage between

forests and climate. This new emphasis on climate change in forestry has a wide range of

interpretations and applications. This review finds that CSF remains loosely defined and

inconsistently applied. Adding further confusion, it remains unclear how existing guidance

on sustainable forest management (SFM) is relevant or might be enhanced to include CSF

principles, including those that strive for demonstrable carbon benefits in terms of seques-

tration and storage. To contribute to a useful and shared understanding of CSF, this paper

(1) assesses current definitions and framing of CSF, (2) explores CSF gaps and potential

risks, (3) presents a new definition of CSF to expand and clarify CSF, and (4) explores

sources of CSF evidence.

Introduction

For many millennia, forests have provided sustenance, materials, ecosystem services, and cul-

tural values to human societies, who in turn have advanced various interventions to support

these values. The long-standing roles of forests as providers are well documented [1–3]. Also

documented is wide variation of culturally acceptable tradeoffs in protection, management,

and material use of forests [4–6].

Climate change is presenting a global challenge to society and the forested ecosystems soci-

ety relies on. This climate crisis, arising because of land use change and emissions from pro-

duction and fossil fuels burning of, changing long-standing forest valuation to include climate

mitigation and adaptation, alongside traditional forest products and services. In turn, forests

have received scholarly recognition as a so-called “Natural Climate Solution” (NCS) or

“Nature-Based Solution” (NBS), meaning society can address climate change through forestry
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by reducing emissions from forest loss or by removing atmospheric greenhouse gases via pho-

tosynthesis and sequestration [7]. Previous NCS assessments have considered the potential of

various land cover and management approaches in terms of opportunity scale (e.g., sequestra-

tion of million metric tons of CO2e) and the costs of implementation. Assessments at interna-

tional [7] and national levels [8, 9] point to currently- or potentially-forested lands as the

dominant opportunity for nature-based climate change mitigation strategies.

Policy makers at various scales, from nation states to local governments, are considering

and advancing forest and climate policies with broad implications for society and the environ-

ment. Forests have become increasingly important in international climate change dialogue, as

seen in the Warsaw Agreement [10, 11], Paris Agreement [10, 12] and the recent COP26 Glas-

gow Leaders’ Declaration on Forests and Land Use, which pledges to end and reverse defores-

tation by 2030 [13], and continued dialogue in COP27 on the role of market mechanisms to

link emitters with forest nations via Article 6 [14]. These efforts are ‘next steps’ to the Kyoto

Protocol and Clean Development Mechanism (CDM) [15]. These examples include Reducing

Emissions from Deforestation and Degradation (REDD) investments and substantial interna-

tional investments to measure, monitor, and promote change in global forest trends [16, 17].

In another context, various regulatory and voluntary markets using forest-based carbon

credits have been initiated (e.g., European Union Emissions Trading System [18]), sputtered

(e.g., Chicago Climate Exchange [19]), or gained traction (e.g., voluntary markets [20]) in the

last two decades. Critiques of market-based activities are that they permit continued pollution

[21], outsource mitigation activities, and are capitalistic measurement-intensive interventions.

Some scholars [22] have further asserted that such attributes benefit only certain program par-

ticipants, and that they are often the same actors responsible for global emissions. Regardless,

forest carbon projects and innovative incentive programming continue to operate and grow,

pointing to an increasing acceptance of mechanisms to finance GHG benefits of trees and

forests.

The new emphasis on forest-based NCS has a wide range of interpretations and applica-

tions. Such divergent interpretations of forest connections with climate change adaptation

and/or mitigation can conflict with one another and have already done so. For example, schol-

arly work has captured tensions between conservation versus utilization [23], issues with car-

bon commodification [24], and assertions that carbon credits are a form of ‘greenwashing’

[21]. Further, it brings an increasingly large assembly of policymakers, program designers, nat-

ural resource professionals, land managers, and private sector actors interested in developing,

selling, buying, and assessing forest carbon credits. Attention to NCS in political, scholarly,

public, and private sectors has dramatically altered forest management and sustainability fram-

ing in recent years, reshaping a long-standing dialogue about our relationship with trees and

forests.

With a diversity of considerations, myriad actors are embracing a phrase that intends to

capture a connection between forests, society, and climate: Climate-Smart Forestry (CSF).

However, specific definitions for CSF vary widely, with some emphasizing sustainability [25]

or economics [26], and others highlighting landscape carbon reserves [27] (see S1 Table for

specific examples). As such, CSF is seemingly being applied to a wide swath of activities and

interpreted uniquely by each audience, landowner type, and practice.

Considering the complexity of climate change and human relationships with forests, this

paper questions whether the term CSF is adequately defined and if some CSF interpretations

present new risks to the environment, society, and climate. This paper also seeks to enhance

the emerging scholarly discussion on whether forest management can be sustainable without

being ‘climate smart’ and if other forestry activities, including avoided conversion and restora-

tion, are adequately recognized under the umbrella of CSF. To assess, we explore how different
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actors are included or excluded in current CSF definitions and consider how other values for

forests (e.g., biodiversity) relate to so-called ‘climate-smart’ outcomes.

To contribute to a useful and shared understanding of CSF, the authors have undertaken a

literature review, qualitative assessment of documents, and statistical analysis of datasets from

related studies. The results are presented in this paper, which (1) assesses current definitions

and framing of CSF, (2) explores CSF gaps and potential risks, (3) presents a new definition of

CSF to broaden intervention types and engage multiple scales of decision-makers, and (4)

explores sources of evidence of CSF.

Current definitions and ideas in CSF, and their linkage to SFM

Use of the term CSF is rapidly increasing in usage in recent years and other examples can be

seen across wide-ranging disciplines, from academia [28] to applied practice by policymakers

[29–31], planners and builders [26], conservation NGOs [27], and certification body standards

([32]; see S1 Table for these examples and others). This section assesses current definitions of

CSF (e.g., interpretations, applications, and principles) as found in current scientific reporting

and literature, policymaking, and mainstream media.

Within academic literature, CSF has a range of definitions (see S2 Table). Consider that

Web of Science searches for “carbon + forests” returned 132,532 results, “carbon + climate

+ forests” had 50,697 results, and “carbon + climate + forests + mitigation” returned 17,595

results. In contrast, as of January 2022, “Climate-Smart Forestry” returned just 18 results via

Web of Science and Science Direct. Thus, despite a great body of scholarly work on topics

intersecting carbon, forests, and climate, the term CSF is relatively new and has been mini-

mally adopted and explored in scientific literature. Further demonstrating the limited scope,

no CSF results are earlier than 2017, nearly all are European-focused (15 focused on Europe, 1

in sub-Saharan Africa, and 1 in the Pacific Northwest of the United States), and most pertain

to industrial forest management (see, for example, [33])

One recent definition, [25, p 2] defines CSF with the following principles:

1. Increasing carbon storage in forests and wood products, in conjunction with the provision-

ing of other ecosystem services,

2. Enhancing human health and community resilience through adaptive forest management,

and

3. Using wood resources sustainably to substitute for non-renewable, carbon-intensive

materials.

With the word ‘sustainable’ explicit or implicit in most CSF applications, it is relevant to

consider previous ideas about sustainable forestry, particularly Sustainable Forest Manage-

ment (SFM). SFM is an approach, closely linked with the notion of ‘sustainable development’,

that has been a central focus of forestry research since the 1980s and is well documented in sci-

entific literature [34]. SFM has an emphasis on productive forest landscapes, or ‘working’ for-

ests, thus denoting ‘sustainable’ in terms of sustained production and the ability to meet the

needs of society now and into the future (see S3 Table for definitions relevant to this paper).

In recent years, while additional forest values (e.g., habitat provisioning) have received new

emphasis in SFM [35], SFM still largely reflects industrialized, development-oriented framing.

Scholars have critiqued SFM for not adequately encompassing socio-cultural values [35] and

political ecologists have noted that industrial forestry generally includes utilitarian tactics that

favor economic production above other values [36, 37]. Moreover, forestry, as a science, is

dominated by ideas developed for and practiced in temperate forest ecosystems, with a focus
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on timber over non-timber products [37]. Still, compared with conventional forest manage-

ment, SFM is considered more interdisciplinary, inclusive, “less hierarchical”, and more

“socially accountable” [34, p 205].

Linking CSF and SFM, [28] suggest that CSF is a subset of SFM (Fig 1A), asserting that

SFM can be advanced with climate considerations and that the resulting CSF is appropriate on

myriad forested landscapes and use types. In their definition, CSF explicitly includes ecosystem

services and acknowledges that climate change threatens production which would have previ-

ously been assumed under SFM practices alone, acknowledging that previous assurances may

no longer be sufficient to ensure long-term outputs (e.g., due to drought or major distur-

bance). However, this definition implies that SFM can still be accomplished without climate

benefits (Fig 1A) and overlooks forests or potentially forested lands that are not managed for

productivity. Under an SFM framing (Fig 1A), CSF might be considered as an optional com-

ponent of SFM. In contrast to Current CSF framing described here, this article introduces the

Enhanced CSF framework (Fig 1B), where SFM is considered just one element of the forest-cli-

mate decision portfolio and is explored in more detail later in this paper.

Gaps and potential risks in current CSF

This section explores potential gaps and risks under a current framing of CSF that focuses only

on forests managed for production by exploring ‘science-practice gaps’ and various risks to

Current CSF framing. It addresses considerations for actors or actions represented in CSF

manifestations and considers how bringing in underrepresented values for forests, like biodi-

versity preservation, or engaging rural communities could improve so-called ‘climate-smart’

outcomes.

Science–Practice gaps

Use of CSF and related terms, such as Climate-Smart Forest Economy [38] or Climate-Smart
Forest Products [39], are emerging and seemingly rely on an assumption that CSF has been

adequately defined and is well understood. This leads to the term being adopted and used col-

loquially, without critical examination and robust scientific rationale, constituting a ‘science-

practice gap’. Science, Technology, and Society (STS) scholars have undertaken work in

Fig 1. CSF theory examples in literature (a) and in applied practice (b).

https://doi.org/10.1371/journal.pclm.0000212.g001
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myriad disciplines on such applied and data-driven science research-implementation gaps

[40] or knowledge-action gaps [41]. With CSF, these manifest as challenges in interpreting

and applying forestry (e.g., growth, carbon, biodiversity, health) and climate (e.g., forest-cli-

mate interactions) sciences to the practice and on-the-ground decision-making of CSF.

To explore perceptions of CSF, consider results from a recent survey distributed to a net-

work of diverse professionals (based largely in North America and Europe) that are affiliated

with or in the network of the Climate-Smart Forest Economy Program [42]. These profession-

als represent organizations that cross forestry, conservation, economic development, sustain-

ability, building and construction. The survey assessed their understanding of CSF definitions

and potential assurances for positive outcomes (Fig 2). When asked level of agreement with

the statement “I have a clear understanding of what CSF refers to”, 84% of respondents (n = 44)

responded Agree or Strongly Agree. They demonstrated a similar level of agreement (81%

responded Agree or Strongly Agree) with “I understand linkages between CSF and climate-
smart forest products”. However, only 26% of those participants agreed that “Assurances for a
climate-smart forest economy are available and understood by actors”. These results show that

the sampled professionals perceived an individual understanding but acknowledged a limited

ability to provide adequate assurances to achieve CSF outcomes.

A different dataset derived from pre-course survey responses (n = 178) from domestic and

international professionals participating in a United States university-level forest carbon train-

ing short course from 2019 to 2021 [43] presents further evidence (Fig 3). In this survey, 94%

Agree or Strongly Agree that “Forest carbon is becoming increasingly important in my profes-
sion” (70% responding Strongly Agree). Interestingly, only 28% Agree or Strongly Agree with

“There is adequate knowledge of forest carbon amongst my colleagues”. Note that 80%

responded Strongly Agree that “A better understanding of forest carbon will improve policy
development and implementation”. Despite this level of Agreement, decision-maker needs may

not be clearly reflected in research and resulting material due to inadequate translation.

These data (Figs 2 and 3) can be interpreted as evidence of a ‘science-practice gap’ in CSF,

by demonstrating gaps in forest carbon knowledge and CSF definitions, linkages, and assur-

ances. This is not unique to CSF; STS scholars have found that “two-way knowledge flow

between science and practice through joint knowledge-production/integration processes” is

rare [40, p 93]. Considering the ongoing climate crisis coupled with the scale of investments in

forest-based NCS, there is a pressing need for two-way knowledge flow to enhance science-

Fig 2. Survey responses from forest, forest product, conservation, and economic development organization

professionals. Level of agreement: 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral or I don’t know, 4 = Agree, and

5 = Strongly Agree.

https://doi.org/10.1371/journal.pclm.0000212.g002
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based CSF framing, metrics, and assessment. To overcome this and to ensure research is not

overlooked by practitioners, [41, p 671] recommend making CSF research language:

1. Salient (relevant to decision-makers and readily accessible)

2. Credible (trustworthy, reliable, and sufficiently authoritative) and

3. Legitimate to both scientists and decision makers (developed via inclusive processes)

Risks of current CSF framing

This section explores a range of risks in Current CSF framing including (i) overly simplified

relationships between carbon sequestration and forest management, (ii) emphasis on above-

ground tree volume as forest carbon stocks, (iii) ‘carbonization’ of forest values, (iv) unin-

tended social effects and unequal benefit distribution, (v) misinterpreting climate effects, and

(vi) overlooking efficiency gains and economic misalignments.

Overly simplified relationships between carbon sequestration and forest management. Forest

carbon storage is the outcome of complex, ecological processes. Oversimplifying carbon

dynamics risks inadequately valuing late succession, primary, and/or old growth forests

because of the misconception that sequestration diminishes rapidly or ceases altogether past

the optimal harvest year, despite evidence that older trees and forests continue to sequester

carbon at high rates well past this point [44, 45]. In fact, [44] uses the term ‘financially mature’

as a notable distinction from a presumably different biophysical threshold for reaching matu-

rity (e.g., a substantial slowdown in annual growth), which may be over a hundred years later.

Forest management and public policy can strongly influence the sequestration process and

some forestry systems may even emit carbon for a variety of reasons [46, 47]. While sequestra-

tion rates are generally higher in younger forests with more vigorous trees, old forests (of the

same type), with larger trees, can have vastly more stored carbon. This has long generated

debate within the scientific community in terms of resulted in a perceived tradeoff between

maintaining carbon in older forests, with potentially declining sequestration, and conversion

to younger forests, with potentially higher carbon sequestration rates [48–50].

As such, Current CSF literature framing may be appropriate for commercial forests but can

leave out other important strategies linking forests and climate, such as avoiding deforestation

or preventing reductions in forest complexity (e.g., biodiversity loss associated with conver-

sions to monoculture plantations) [51]. Furthermore, many forests do not require

Fig 3. Data 2018–2021 pre-course participant questionnaire for understanding forest carbon management, MSU

forest carbon and climate program. Level of agreement: 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral or I don’t know,

4 = Agree, and 5 = Strongly Agree.

https://doi.org/10.1371/journal.pclm.0000212.g003
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management to help them remain healthy and in a state of net carbon sequestration or long-

term storage. In fact, many forest health problems today have been caused or made worse by

human interference. Examples include fire suppression [52], disease in monoculture [53], and

invasive species expansion post-harvest [54].

Management activities that disturb the forest result in biogenic carbon emissions [55];

nearby trees damaged during management may die, the disturbed litter pool increases decom-

position, trees are felled for skid roads, equipment can cause deep soil ruts and loss of stored

soil carbon, and there is a reduction of woody material being transferred to litter and dead

material pools. Studies [56, 57] have estimated management-related losses of 30 ± 6% in forest

floor carbon of temperate forests depending on species composition (among other factors).

While wood products provide important biomaterials, scaling up production management in

forests with currently low-impact or no management would result in immediate and near-

term, and possibly long-term, losses to stored ecosystem carbon [56, 58]. This lower carbon

persists for at least decades [59] and can contribute to a shifting-baseline syndrome, wherein

the ‘baseline’ forest carbon levels used for reference are already much lower than historical

conditions [60].

Losing large trees can have especially negative climate implications. Researchers have found

that large-diameter trees “store disproportionally massive amounts of carbon and are a major

driver of carbon cycle dynamics in forests worldwide” [61, p 1]. This study, using forest inven-

tory data from over 3,300 plots to assess the role of large diameter trees (greater than 53 cm,

diameter at breast height), found that such trees stored 42% of total aboveground carbon

despite accounting for only 3% of trees in the inventory [61].

Emphasis on aboveground tree volume as forest carbon stocks. There are also multiple, dis-

tinct challenges with forest carbon measurement, particularly as they relate to Current CSF ini-

tiatives (e.g., forest carbon projects). One issue is that most forest carbon inventories focus on

aboveground biomass as the principal data for measurement, reporting, and verification

(MRV) of forest carbon stocks. It is convenient that inventories of forest merchantable stem

volume can be correlated with forest carbon stocks, because this greatly increases data avail-

ability for estimating carbon sequestration through biomass expansion factor approaches

(such systems have been employed in both the U.S. and Canadian national forest inventories;

[62, 63]). However, such forest carbon estimates can be biased towards carbon in tree boles

[64] and can minimize or leave out carbon pool estimates in other parts of the trees and forests,

leading to bias in model predictions (e.g., tree crowns, see [65]).

One major issue is the use of forest volume inventories or timber yield curves as proxies for

forest carbon accumulation; this has implications for how forests are measured in terms of

understanding and pursuing carbon benefits. Forest carbon storage dynamics are more com-

plex than timber growth and yield curves imply [61, 66]. Timber yield is often maximized in

monospecific plantations, but studies have found that multi-species forests store more carbon

overall, maintain high sequestration rates over time (avoiding boom/bust cycle), and store

more carbon across other pools [67, 68]. Framing forest carbon dynamics in terms of timber

growth and yield curves may give the false impression that plantation-style forests are ideal for

carbon sequestration rates, but with underperforming results for net climate benefit. Consider

that trees spend the first portion of their lives in lower productivity [67], so harvesting can

return a stand to a very low period of productivity. On the other end of the life spectrum, forest

trees accumulate high rates of carbon at later lifetime stages as, for example, an estimated 70–

80% accumulated after tropical trees reach 70 years [69].

Constraints to measuring carbon in other pools (e.g., soil, litter, downed wood, below-

ground) is a significant barrier [70]. For example, only up to 50% of total tropical forest carbon

is found in aboveground, living pools [56]. Forest soil carbon and root biomass are much
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more difficult to quantify and remain a challenge in forest carbon measurements [71]. Some

forest ecosystems have most of their carbon stored belowground; notably mangrove forests,

which have been shown to have some of the highest carbon stores of any ecosystem worldwide

[72, 73]. Aboveground carbon sequestration rates may be greater in highly productive planta-

tion systems, but they may have lower total carbon storage than alternative forestry systems

with lower above-ground sequestration rates (e.g., analog forestry systems versus teak planta-

tions, see [68]). Another major challenge in forest carbon inventory comes from assumptions

related to, or simply lack of data on, dead tree carbon stocks [74] and decay rates of dead mate-

rial [71, 75].

Emerging science aims to better link other methods (e.g., remote sensing and tracking of

fluxes through eddy covariance towers) that can enhance measurements and may be more

appropriate in some cases and in other forest types [76]. Until such rates are quantified well, it

will be difficult to determine more precisely the balance between carbon capture and emissions

under different forest management scenarios.

‘Carbonization’ of forest values over resilience and biodiversity. Overemphasizing atmospheric

carbon sequestration at the expense of other forest values has been called ‘carbonization’ of

forest governance [77]. If CSF places a majority emphasis on carbon sequestration to mitigate

climate change, there may be inadequate emphasis on adaptive mitigation strategies to ensure

forests can respond to future climate trajectories. This may result in oversight of the peak eco-

logical function necessary for forest resilience [78, 79]. While the CSF definition presented ear-

lier [25]) includes ‘adaptation’, emphasis is largely placed on maintaining productivity and

carbon storage levels.

Given the global biodiversity crisis co-occurring with the climate crisis, prioritizing carbon

over biodiversity may have severe near and long-term consequences [80, 81]. Without a heavy

emphasis on biodiversity in resilience, CSF can leave out the growing consensus around a

need for diverse forests and to protect species richness. Notions of CSF currently do not appear

to account for climate change effects on both floral and faunal diversity or intra-species genetic

diversity [78, 82, 83]. Tree species diversity itself is centrally important in adaptation to main-

tain carbon stocks into the future [70].

Scholarly work has considered different management strategies that link carbon and biodi-

versity outcomes (see [84]). While some studies show clear linkages between increased carbon

and biodiversity co-benefits, for example in tropical forest restoration [85], other studies point

to key species benefits when aboveground carbon is lower. As an example, the Kirtland warbler

in Michigan, USA jack pine (Pinus banksiana) forests, requires early succession habitat to

thrive [86]. Other species require dense undisturbed or late succession forests, including many

which we have more limited understanding (e.g., fungi, insects) of their unique roles in con-

tributing to overall ecosystem function and resilience.

Researchers are finding carbon-focused conservation has limitations, as pursuing high car-

bon storage and habitat for specific species (e.g., birds or primates, see [87]) can still overlook

overall biodiverse complexity [88]. This carries a risk for forests globally, as studies point to

extended recovery times of species composition following a disturbance. For example, [87]

showed that species requiring mature forests can still be absent from secondary forests 100

years later. The latter study goes on to assert that our understanding of secondary forest recov-

ery is so limited it invalidates “any reliance upon the value of secondary forest for future con-

servation of tropical forest biodiversity” [87, p 28]. These results highlight risks of contributing

to extinction for mature-forest dependent species by promoting management intensification

in pursuit of higher sequestration rates, particularly with confounding stresses from a chang-

ing climate and the limited extent that mature forests have today.
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Considering there is not a clear (e.g., linear) relation between carbon and biodiversity

across different forest types [89], there is a pressing need to frame and assess biodiversity

within CSF.

Unintended societal effects and unequal benefit distribution. CSF at scale implies substantial

shifts in material use, investments, economics, and policies affecting land management, which

will have wide-ranging societal impacts and creates the potential for unintended negative

effects. Current CSF tends to emphasize large-scale opportunities, potentially overlooking

smaller scale interventions (e.g., tree planting efforts, see [90]). Under a narrow framing of

Current CSF, well-positioned beneficiaries (e.g., global investors and private companies) may

stand to gain, while small landowners and Indigenous communities remain overlooked or

even negatively affected by increasing pressure (e.g., timber production) or shifting values

(e.g., monoculture) [21, 91]. Focusing mainly on commercially productive forests leaves out

many potential actors or could create perverse incentives to develop more productive forests.

Moreover, Current CSF has a focus on complex, technical carbon stock measurements, which

creates barriers for actors without training or sufficient resources to engage in complicated

schemes [92–94]. Traditional ecological knowledge and cultural values may not be adequately

embraced [95], and communities and rural actors likely perceive tradeoffs between livelihoods

and biodiversity very differently than in industrialized outlooks [22, 96]. Because of this, not all

such peoples are interested in advancing production-oriented forest management as defined in

Current CSF framing. Despite optimistic views of far-reaching benefits for all [97], industry,

investors, and governments are more likely to benefit as sophisticated participants and propo-

nents of complex carbon schemes and global markets, an example of elite capture [21, 98].

The case of Indigenous people highlights how narrowly framed CSF risks overlooking best

practices in justice and inclusion, by supporting entrenched systems of extraction, exploita-

tion, and inequity. Roughly 1.5 billion Indigenous and rural peoples depend on forests for

food and livelihoods, occupying approximately 28% of global land [81] and nearly 20% of

global forests, with either formal or informal tenure rights [99]. Forests cover more than 80

percent of indigenous land area, totaling over 330 million hectares [100] of some of the most

ecologically important, carbon rich biodiversity hotspots on Earth [81, 101]. Of these, 173 mil-

lion hectares are considered “intact forests” meaning they have had little to no human modifi-

cations in the last 60–80 years [81]. Recent decades have seen an increased focus on

indigenous and rural rights in relation to conservation and climate mitigation [91], which can

be leveraged to reduce risk of CSF oversight.

The challenge of engaging rural landowners in CSF can be exemplified in data from a 2019

survey issued to farmland owners with over 100 years of consecutive ownership in the Kalama-

zoo River watershed in Michigan, USA (n = 116). Farm owners were asked questions about

their land and if it could be leveraged to contribute to climate solutions (e.g., afforestation or

forest restocking). The results were notable; 54% reported having marginal land (654 acres

total) and 73% reported having fallow land (410 acres total) (Fig 4). Put together, this points to

at least 1000 acres in one watershed, across 110 properties, as having potential for restoration

with climate benefits. However, when participants shared their level of agreement with the

statement “Climate change influences my land management decisions”, only 16% responded

Agree or Strongly Agree. Contrarily, 57% responded Agree or Strongly Agree with “Environ-
mental stewardship and beliefs influence my land management decisions”. Finally, when asked

level of agreement with the statement “I would like to learn how my land can provide carbon
sequestration” the majority (41%) responded Neither Agree nor Disagree, indicating either dis-

interest or uncertainty. These data suggest that many rural landowners may not be ready to

engage in or prioritize forest carbon but would be amenable to CSF activities framed as “envi-

ronmental stewardship” or another culturally relevant term or phrase.
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Misinterpreting forest ecosystem management and climate effects. The emphasis on carbon

sequestration as the dominant indicator of Current CSF brings in many potential misinterpre-

tations in (1) non-carbon forest interactions with climate, (2) fossil fuel use in forestry opera-

tions and transportation, and (3) long-term and end-of-life carbon storage.

Non-carbon forest interactions with climate

Forest-climate effects are an area of active research and cannot be calculated from only bio-

genic carbon sequestration and emissions estimates. While the correlation between atmospheric

CO2 and global climate change is well documented [102], this does not fully explain forests’ role

in global temperature regulation. Forests generally have lower surface albedo (energy reflec-

tance) and higher evapotranspiration (ET) compared to open land and non-tree vegetation due

to the dark shade of the foliage. This reduced albedo can increase local warming, but this warm-

ing can be offset by increased ET. The precise connection is correlated with latitude; magnitudes

and even effect direction on climate varies among tropical, temperate, and boreal forests [103].

These interactions complicate the carbon estimations, as recent research has found increased

absorption of solar radiation creates localized warming that can outstrip the benefit of calculable

increased carbon storage, for example by warming soil and increasing decomposition and

release of soil carbon [104]. Because of these dynamics, climate benefits (e.g., local temperature,

increased carbon storage) of interventions may have different effects based on forest type and

geographic location. One study in Norway found net climate warming from increasing extent

and quantity of high latitude mountain birch forests, even when considering the climate benefit

of the additional stored carbon [105]. Comparatively, [106] explored temperature regulation

and drought feedbacks (‘savannization’) in the Amazon basin linked to degradation, which

points to prioritizing tropical forest protection over other forest-climate strategies.

Fossil fuel use in forestry operations and transportation

Fossil fuel use in forestry also undermines climate benefits calculated as part of harvested

wood products (HWPs) in CSF. An established science, estimating carbon stored in HWPs

requires robust life cycle analyses, including GHG emissions from production and shipping. A

2010 study estimated total yearly global emissions, considering both management and trans-

port, to be 88.1 million metric tons CO2e. Management-related emissions (36.9 million metric

tons CO2e) includes productivity interventions such as thinning as well as harvesting activities.

Total transport-related forestry emissions were estimated to be over 50 million metric tons of

CO2e annually, with nearly 60 percent of these emissions associated with international trade

[107]. Beyond this, fossil fuels are used in nearly all in-forest management activities including

Fig 4. Survey response data by Michigan Kalamazoo watershed farmland owners (2019). Level of agreement:

1 = Strongly Disagree, 2 = Disagree, 3 = Neutral or I don’t know, 4 = Agree, and 5 = Strongly Agree.

https://doi.org/10.1371/journal.pclm.0000212.g004
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thinning, harvest, and hauling to mills, suggesting a need for CSF strategies that reduce carbon

emissions associated with forest management.

Long-term and end-of-life carbon storage

Materials from sustainably managed forests, or with low-intensity management, provide

society with essential goods and have an important role in CSF. Carbon in wood products is

estimated as stored carbon (based on wood density and carbon ratio estimates), embodied car-

bon (overall emissions using life-cycle analysis), and substitution effect (net benefit from

replacing a more emissions-intensive material). Carbon in HWPs is stored if the material

remains in its physical form. Buildings, furnishings, and infrastructure across the built envi-

ronment hold carbon for the longest time when compared to other wood products.

Wood products are second only to concrete in US annual waste material production, pro-

ducing 40.8 million tons of waste in 2018 [108]. At end of life, wood products are typically

incinerated or landfilled. Once in landfills, HWPs release gas (approximately half methane,

CH4, and half CO2 by volume) from decomposition of degradable organic carbon unless in

strictly anaerobic conditions [107, 109]. To estimate stored carbon eventually reentering the

atmosphere, IPCC provides a default value of 0.5 (50%) [110]; note that site-specific studies

have reported much lower estimates (e.g., 0–3% in US landfills, [111]). However, conditions in

anaerobic landfills vary globally, particularly as open dumps and incineration are still common

waste management strategies in developing countries. Even in developed nations, CO2 and

CH4 emissions from landfills are substantial (e.g., roughly 2% of annual GHG emissions in

Europe) and undermine the carbon storage of HWPs in landfills [112]. Because of this, the

HWP duration of use and end-of-life of need to be considered in CSF.

Overlooking efficiency gains and economic misalignments

Inefficiencies in harvesting, processing, and material transport can undercut climate bene-

fits of CSF and reduce landscape carbon storage. The modern globalized economy creates new

opportunities, as well as concerns, for timber and agroforestry commodities about large scale

and rapid impacts on forested landscapes [113]. Global trade is rife with inefficiency and inter-

national trade has been linked to higher increased GHG emissions [114]; transporting materi-

als globally that could be produced and used locally is a major source of emissions [81].

To pursue climate benefits under CSF, there are ample opportunities to alter traditional

economic flows of goods and materials to better value and emphasize waste reduction and

material re-use, extend residence time of forest-based material in circulation, and incentivize

innovative carbon storage and HWP production in landscapes outside of traditional forest

management (e.g., abandoned urban and peri-urban areas). Recycling and waste product utili-

zation can also help meet demands of scaled applications (e.g., bioenergy, mass timber).

Data from the US EPA ([108]; see Table 1) estimated that only 17% of US wood (3.1 of

18.09 million tons) was re-used and recycled and 67% (12.15 million tons) ended up in a land-

fill in 2018. Note that such recycling is almost entirely from chipping wood used in transport

and packaging (e.g., pallets), but it is unclear if the chips are re-used in new materials or go

towards emissions (e.g., via decomposition or burning). Recycling of durable wood products

(6.51 million tons of waste generated in 2018) remains “negligible” [108].

Table 1. 2018 US wood material data with estimated equivalent forest acreage (EPA 2020).

US estimate (2018) Amount

Wood material produced (million tons) 18.09

Wood material landfilled (million tons) 12.15

Wood material recycled (million tons) 3.1

Approximate equivalent forest extent (estimating 100 tons per acre) 121,500 acres (49,169 hectares)

https://doi.org/10.1371/journal.pclm.0000212.t001
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Consider a hypothetical scenario to grasp the scale of this material (Table 1). Assuming an

average US southeast softwood clear-cut produces 100 tons of wood material per acre (40.5

tons per hectare), one could estimate annual wood landfilled as equivalent to harvest of

121,500 acres (49,169 hectares) of such a forest. These figures demonstrate how wood in use

now could support CSF by providing substantial source material that can minimize forest

pressure in the case of increased demand for ‘climate-smart’ wood products.

A 2020 study from the Michigan State University campus assessed the carbon benefits of a

wood material diversion (sustainable wood recovery initiative, or SWRI) program that uses

trees felled on campus to create artisanal wood products (e.g., furniture and housewares)

[115]. The analysis found that between 2015 and 2017, MSU SWRI reduced net CO2 emissions

from the MSU campus urban wood system by approximately 28.9%, diverting 68.66 metric

tons of CO2e in logs and securing 28.42 metric tons of CO2e in final wood products, with

40.24 metric tons of CO2e remained in storage. Without this intervention, removal of campus

trees would have resulted in emissions of 173.78 metric tons of CO2, whereas with the MSU

SWRI, the system emitted 123.63 metric tons of CO2, equating to total avoided emissions of

approximately 50.15 metric tons CO2 (see Table 2). While fossil fuel emissions from chipping

diminished, overall energy used for processing increased, including a net increase in fossil fuel

use. Despite some campus solar, energy is largely from natural gas, diesel, and gasoline, which

reflect net additive emissions distinct from the biogenic carbon cycle stored in the wood.

While this case demonstrates the added value of storing biogenic carbon longer, the use of

fossil fuels contributes a net increase in atmospheric carbon from pre-industrial times. Soon, it

will be necessary to eliminate fossil fuels from a ‘climate-smart’ forest product system to

improve the comparative scenarios of wood use.

Expanding and clarifying CSF

Enhanced CSF framework. This analysis finds there is ample opportunity to broaden the

concept of CSF to a spectrum of activities currently underrepresented that will increase climate

benefits as well as social and environmental co-benefits. Adding to [25] three pillars (see Cur-
rent definitions and ideas in CSF above), a broader definition could explicitly include addi-

tional landscapes, forest types, and interventions with climate benefits. Here, we propose the

following additions as two new pillars to create an ‘Enhanced’ CSF definition:

4) Protecting natural places by avoiding loss of forests, intact forests, forest complexity, biodi-

versity, or connectivity, or conversion to higher management intensity;

Table 2. Estimate of avoided emissions with MSU campus wood material diversion program (in metric tons

CO2).

Without MSU SWRI With MSU SWRI

Biomass removed from campus 146.09 146.09

Biomass–Diverted to SWRI 0.00 - 68.66

Net biomass removed from campus 146.09 77.43

Emissions—Processing mulch 0.52 0.28

Emissions—IPF tree removal vehicles 27.17 27.17

Emissions—SWRI step truck 0.00 6.28

Emissions—SWRI sawmill 0.00 0.47

Emissions—SWRI wood lab 0.00 12.00

Total emissions 173.78 123.63

Total avoided emissions 0.00 50.15

https://doi.org/10.1371/journal.pclm.0000212.t002
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5) Promote restoration of degraded landscapes, improved ecosystem function, and connectiv-

ity (e.g., through corridors)

To better understand the distinction between Current and Enhanced CSF framing, Fig 5

distinguishes activities that dominate Current CSF (dark green) from those on either end of

the forest condition and type spectrum that are not adequately represented (light green).

These Enhanced columns capture the new pillars presented above. Further, the left column,

Phases, reflects assessment and implementation phases that have not yet been clearly defined

for CSF. Phases 1–4 reflect those could be considered generally present in Current CSF fram-

ing. The addition of a new Phase 5 captures broader assessment and impacts of Enhanced CSF

Fig 5. Planning and implementation phases of both Current CSF and proposed Enhanced CSF frameworks. This figure shows conceptual planning and

implementation Phases (numbered 1–5) of both Current CSF and the Enhanced CSF proposed in this paper. The dark green center column indicates common features of

Current CSF, particularly reflecting the emphasis on productive and managed forests in Improved Forest Management carbon projects. In Phase 1, Enhanced CSF, the

light green columns on the right and left, encompass a broader spectrum of potential CSF landscapes from deforested or degraded (right, light green column) to minimal

intervention, remote areas (left, light green column) than is seen in Current CSF alone (center, dark green column). After the landscape is assessed, GHG benefit (e.g.,

carbon storage and sequestration) is analyzed in Phase 2. Phase 3 includes a strategy assessment to achieve climate benefit, with tactics including reforestation and

restoration (left, light green column), improved forest management (center, dark green column), and protection (right, light green column). Phase 4 captures feasibility

challenges (e.g., finance, social license, additionality) that may be associated with each tactic; reflecting the high feasibility of Current CSF and the feasibility challenges

facing Enhanced CSF. Phase 5, with the entire row in light green indicating it is a part of Enhanced CSF, reflects the increasingly dominant themes of landscape and

biodiversity planning, inclusion, safeguards, and forest products that explicitly to link multiple scales and disciplines of actors that can be absent from Current CSF.

https://doi.org/10.1371/journal.pclm.0000212.g005
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currently absent from many strategies. Note that Phase 5 is increasingly discussed in CSF-

related dialogues (e.g., climate-smart forest economies or mass timber) and we propose should

have a role in a broader CSF definition.

Enhanced CSF components. The following sections explore key components of the

Enhanced CSF framework presented above by highlighting details of the proposed Phases (see

Fig 5, first column, for phase names).

1. Assess current forest condition and use (on a spectrum). CSF science would benefit from

additional linkages across the spectrum of forest conditions and climate benefits to include

these land and forest classifications as additional starting points to assess potential for CSF

solutions. The Current CSF framework focuses on carbon in productive forests, including in

most domestic US forest carbon projects and major international investments from develop-

ment banks [116, 117]. However, as this review shows, there is a range of landscapes that could

be included and promoted in CSF, including degraded areas, savannas, trees outside of forests,

and intact areas with limited or no human interventions currently (e.g., remote tropical or

boreal forests). These cover types are underrepresented in Current CSF literature but are rele-

vant under Enhanced CSF framing. This aligns with several examples of colloquial usage (see

Table 2, [117]) and makes for direct connections to REDD+ and restoration activities that are

proven to provide highly impactful climate and carbon storage benefits.

2. Calculate carbon storage and GHG fluxes (Actual and Potential). CSF interventions must

consider actual and potential greenhouse gas fluxes when considering benefits of wood use

and stored carbon. There is an emerging emphasis on sequestration rates over carbon storage,

which, as this paper explores, presents a narrow understanding of climate benefits compared

to, for example, considering long-term resilience of forests and other treed landscapes. These

oversights could undermine any carbon storage or sequestration by way of large-scale distur-

bance or die-off. On the other hand, Enhanced CSF principles can augment traditional forestry

metrics by identifying and promoting additional indicators (e.g., tree longevity and biomass

residency time) as part of CSF analysis to appraise multiple forest types more appropriately.

These additional data will make it more likely that actors can adequately assess higher storage,

lower productivity forests [56, 118, 119], as well as bring attention to maintaining large and

secure carbon pools in place now [58].

Moreover, some forest carbon projects leave out carbon pools and GHGs considered ‘not

significant’ or too difficult to assess, though some of them are potentially immensely important

(e.g., such as forested peat soils, see [120]). While it may not be possible to adequately measure

them now, their inclusion, event with default values, can provide important insights to support

decision-making. Further, if CSF intends to make claims about carbon in the HWP pool, these

calculations must be data-driven to avoid overestimating substitution benefit [121, 122] or

underestimating emissions in forestry practices.

3. Determine strategy and tactics. While SFM focuses on forests managed for productivity,

Enhanced CSF encompasses additional decisions for forested and potentially forested land-

scapes. An emphasis solely on ‘productive’, ‘managed’, or ‘working’ forests overlooks other

opportunities for optimal climate benefits, particularly when planning at a landscape scale.

Based on GHG information from Phase 2, an optimal mix of tactics can be determined that

may include afforestation or reforestation, improved forest management (a type of SFM com-

mon in temperate carbon projects that pursues adjustments to practices to increase carbon

storage on the landscape and in products) or Reduced Impact Logging (RIL), Avoided conver-

sion of forested lands (including changes that result in loss of biodiversity or key species), or a

combination of these.

Considering momentum on forest carbon projects and jurisdictional approaches, these

methods and strategies could be explicitly linked in Enhanced CSF framing. Such interventions
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are well-documented in methodologies (e.g., Verra [123]), and access to a wider range of solu-

tions can avoid potential pitfalls such as overlooking unique value of old or late succession for-

ests, inappropriately prioritizing trees over prairies, or promoting more intense or even

commercial forest management in communal forests with no history or interest in that activ-

ity. Further, if HWPs are part of the CSF strategy mix, it is essential to pursue efficiency for

optimal climate benefits. CSF strategies could include identifying cascading value for wood

materials to increase emphasis on long-lived products, reuse, and recycling.

4. Consideration of feasibility and implementation. Forest carbon projects typically have a fea-

sibility stage that includes assessment of carbon stocks and fluxes, carbon market access, technical

capacity, governance and management, and financial considerations (e.g., opportunity, inventory,

and monitoring costs). Current CSF, particularly efforts that alter production management

regimes (Improved Forest Management, or IFM), are highly feasible and have become the domi-

nant source of carbon credits. For example, in the United States around 50% of projects on the

Verra registry [123] and 87% on California ARB [117] are IFM projects. On the other hand, activ-

ities can be considered lower feasibility for a range of reasons, including high value of alternative

land uses (known as opportunity costs), an inability to prove additionality, lower estimated

sequestration rates, and scale of intervention (e.g., smaller parcels) (see Table 3).

CSF should include considerations beyond implementation costs and additionality to create

more inclusive incentive structures. Carbon schemes that require evidence of deforestation

risk to claim additionality or offer low payments to rural actors to protect forests, can under-

value stored carbon. For example, a major Peruvian conservation program, National Program

for the Conservation of Forests (PNCB in Spanish), pays Indigenous communities 10 soles—

approximately 3USD—per hectare, even in areas of demonstrably high risk [124] and of well-

documented high-biodiversity ecological value [125].

Inclusive CSF interventions could benefit more actors by being easy to understand and

with low barriers to entry (e.g., cost and knowledge). Increasingly, programs that provide

Enhanced CSF benefits are reaching additional actors with programs that are comprehensible

and with reasonable requirements (e.g., short time commitments). The Peruvian PNCB, dis-

cussed previously, performs well in this aspect, requiring commitments of only 5 years and

presents the program in a simpler framing (avoiding forest conversion) and avoids technical

carbon knowledge. Similarly, the US-based Family Forest Carbon Program offers shorter time-

frames when compared to traditional carbon projects and compensates landowners for under-

taking and committing to specific practices, like removing invasive species or allowing their

forests to increase in maturity [126].

Key aspects of feasibility are social dimensions, like governance, participation, and inclu-

sion of grievance mechanisms. [127] pointed out that policies should focus on how to ensure

meaningful participation of local users in developing forest management and protection plans

Table 3. Examples sources of low feasibility scenarios in Current CSF framing.

Type Example

Opportunity

costs

High land value for commodity production overrides finances available for forest protection

Additionality An inability to prove additionality (e.g., in the case of communally held remote tropical forests)

Carbon Lower estimated sequestration rates despite immense carbon pools, (e.g., mature tropical

Amazon)

Low carbon return and high initial implementation costs for a period (e.g., for afforestation or

reforestation)

Scale Small scale intervention on a 20-acre parcel

https://doi.org/10.1371/journal.pclm.0000212.t003
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[128]. Considering the example programs above, these tactics are helping overcome social bar-

riers and increase feasibility that will be essential to scale and incentivize robust and diverse

CSF interventions.

5. Assess broader impacts of CSF strategy

Enhanced CSF does not occur only at the parcel level. Instead, parcel-level initiatives are

considered as component tactics of strategies to produce optimum outcomes at a landscape

scale. This requires considerations like balancing production with protection and connecting

natural areas as a restoration strategy.

Considering how and where to distribute benefits efficiently and equitably will be the central

challenge going forward if CSF-oriented climate finance continues to arrive in forests globally

[129]. Tactics should include horizontal (lateral) and vertical (top down or bottom up) benefit

distribution across actors from forest decision-makers to wood users in built environments [130].

Multiple levels of governance and incentives require integrated approaches to sustainable

land use, which will underpin CSF implementation. Further, multiple scales of government

reporting (e.g., national level commitments in UNFCCC Nationally Determined Contribu-

tions (NDCs), jurisdictional approaches by sub-national actors) indicate different levels of

uncertainty and possibilities for interventions. There remain opportunities to improve link-

ages between carbon stocks with landscape scale planning and management, to ensure carbon

pool levels are maintained. Because of the wide range of possible actors in Enhanced CSF, it is

becoming increasingly imperative and yet difficult to merge and layer this information in ways

that neither inflate nor overlook benefits; or push increased sequestration at the detriment of

stored carbon, communities, or other ecosystem services or forest inhabitants. Finally, efforts

should strengthen incorporation of social and environmental safeguards (limiting negative

consequences) in CSF, including unique approaches to eliminating harm (e.g., biodiversity

loss) and increasing co-benefits across scales like local or regional economies and watersheds.

Sources of evidence of CSF

As shown in this analysis, Enhanced CSF reflects a complex interdisciplinary realm, crossing

guidance and metrics for carbon storage and sequestration, biodiversity, sustainability, gover-

nance, and development. Dialogue on CSF can include wide ranging expertise, from architects

to foresters to development organizations. Currently, there are substantial limitations in assur-

ing sustainability in global forest management and product use, and it is unclear if or how

available assurances can adequately assess and communicate CSF principles in an efficient and

robust manner [93]. Further, the range of actors and decision-makers engaging in CSF makes

it challenging to work across existing frameworks to safeguard against negative consequences.

The determination of whether forestry is ’climate smart’ is a multistage process; the phases

described here (Fig 5) represent a conceptualization of that process. Stacking and layering CSF

methods and assurances will be necessary to assess these impacts; requiring the ability to trans-

late data and methodologies for parcel level certifications, forest carbon projects, jurisdictional

areas, and along the chain of custody for wood products. As many of these actors have good

practice guidance or requirements in place, this section explores potential CSF additional met-

rics and assurances as well as additional sources of guidance useful for clarifying CSF and

points of initiation for additional growth going forward.

Established implementation science

Scientific information can shape behavior through various processes of ‘implementation science’.
In forestry, these can include regulations, voluntary guidelines, extension and knowledge trans-

fer, evaluation frameworks, and professional organizations. Such examples of implementation
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science act as a translator between research and practitioner communities, i.e., overcoming the

science-practice gap. As climate change becomes an increasing and persistent threat to society

and forests, there are efforts to rapidly expand previous evaluation sustainable forestry frame-

works (e.g., sustainable management Certification, Criteria and Indicators, Laws and Policies,

Nationally Determined Contributions), Trade agreements, Best Management Practices) with

new initiatives (e.g., Climate Smart Forest Economy Program, jurisdictional approaches). There

have been relevant scholarly efforts assessing SFM criteria and indicators to identify which indi-

cators are applicable for CSF, in a largely managed forest context [28, 131]. Monitoring, Report-

ing, and Verification (MRV) is the science of metrics and indicators for forest carbon and other

GHG measurements. As a well-established approach in line with national commitments, direct

linkages to the emerging theories around CSF have not yet been made clear, though they pre-

sumably match with a variety of measurement approaches related to carbon and forests. Consid-

ering the immense MRV efforts by nation-states and increasingly sub-state actors to establish

MRV systems, there is increasingly ample data on landscape carbon stocks in above and below

ground pools, and increasingly in soils. However, as this paper explores, carbon stocks alone are

limited in their ability to frame climate benefits more broadly (e.g., climate “smartness”) and

MRV protocols might need to be Enhanced to include broader CSF principles.

Sustainable forest management certification, particularly for landowners, is a central inter-

face to close the science-knowledge gap (see S3 Table for the language in the standard as well

as other examples). However, in areas with weak governance and high levels of illegal activity,

chain of custody can be nearly impossible to determine, limiting the power of existing assur-

ances like certification. This means that promoting wood used from unknown origins can

have major social and environmental impacts. Generally, certification and their implementing

organizations provide not only guidance, but a two-way communication platform to engage

and train rural decision-makers and utilize inclusive stakeholder engagement process to

develop guidance. Straka and Khanal [132] describe how forest certification is a tool for knowl-

edge transfer, and, as an example, the latest Sustainable Forestry Initiative (SFI) standard

includes a new Objective titled “Climate Smart Forestry” [32].

Emerging implementation science

Implementation science can also strive to include participatory and mutually beneficial data

collection and sharing efforts (e.g., community-based monitoring). Increasing value for com-

munities to participate, value their role as protectors of resources. These established sources of

implementation offer opportunities to add specific guidance and planning related to CSF to

reach practitioners [133].

Unique methodologies can address risk and improve outcomes. Project level requirements

(forest carbon projects) are well established and emerging guidance on climate-smart forest

economies is forthcoming. At the nation-state level, National Safeguard Information Systems

(SIS) include indicators like ‘No Net Loss’ of biodiversity (NNL), or even strive for a ‘Net Gain’

(NG) [134]. Additional methodologies to provide guidance for identifying areas that are ideal

for restoration (e.g., where previous high carbon storage areas, boost habitat connectivity)

remain underdeveloped and underemphasized.

Overall, more research and engagement work at assessing CSF, particularly a broader defi-

nition is needed to implement the principles across additional landscapes and scales.

Conclusion

Largescale application of the Current CSF framework could result in paltry or even undesirable

outcomes for climate, biodiversity, and society. This review finds that, despite its increasing
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use in professional and applied contexts, definitions and analysis of CSF are limited in the liter-

ature, reflecting a ‘science-practice gap’. Our analysis reveals additional planning and imple-

mentation components are necessary to assess and ensure the degree to which forest

interventions are in fact ‘climate-smart’, including broadening forest cover types, conditions,

and climate interactions. To do so, this paper presents a framework with an Enhanced CSF def-

inition to better link scholarly work in carbon, climate, communities, and forests which evolv-

ing interpretations of forest-based climate action. This expanded framework aims to support

the translation of the theoretical CSF, defined by the researcher, into practice, with interven-

tions that to engage rural and marginal actors, build local and regional economies, minimize

waste, limit and eventually eliminate fossil fuels, and value diverse forest values (e.g., carbon

storage alongside cultural values, habitat).

CSF diverges from SFM in the depth of existing research, eligible land and forest categories,

and indicators needed for assessment. Still under-studied, scholarly work appears to generally

indicate that CSF could be understood as a niche component of SFM [29], implying that there

exists forest management that is sustainable but not considered ‘climate-smart’ (as in, there

are no calculable carbon or GHG benefits) as well as leaving out potentially forested landscapes

and intact areas that can be targeted for protection. This analysis offers a different conclusion,

contending CSF is a broad umbrella under which to assess additional forested or potentially

forested landscapes, particularly those that may not be managed primarily for timber. In this

definition, SFM is only one element under the broad umbrella of CSF, which encompass a

diversity of land management and conservation practices beyond carbon, but that are essential

to adapting to climate, actively consider other species, and supporting resilient landscapes for

multiple values in society.

CSF is being used broadly outside of academia, demonstrating a need to incorporate cli-

mate-oriented decision-making across many landscapes including–not excluding–protected

lands, urban areas, and in restoration. This framing reaches multiple professional disciplines

crossing forestry, development and planning, timber production, conservation, natural

resource management, social sciences, and governing bodies. For CSF to reach its potential, it

should include wood use as efficiently and for as long as possible, eliminate risk of perverse

incentives to replace more natural landscapes with plantation forests, maintain or increase

landscape-level carbon, improve inefficient wood use practices, and restore degraded lands.

An Enhanced framing of CSF would reduce risks associated with applying production-ori-

ented CSF too broadly–undesirable outcomes for environment and society–by drawing in the

robust body of science on carbon, climate, forests, habitats, and social science (including par-

ticipation, economics, justice, and diverse values of nature).

Future work will need to pursue improved methods to estimate and model forest carbon

across pools, as well incorporate climate sensitivity, uncertainty assessments, and quantifica-

tion of other ecosystem services (e.g., biodiversity, hydrologic processes). Building on best

practices from across sustainable development and forestry disciplines, CSF requires inclusive

dialogue to navigate this profound opportunity for radical revisioning of forestland decision-

making, forest product use, conservation, transparency, economic indicators, inclusion, and

benefit sharing.
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